Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Commun Biol ; 4(1): 267, 2021 02 24.
Article in English | MEDLINE | ID: covidwho-1101684

ABSTRACT

Millions of individuals who have recovered from SARS-CoV-2 infection may be eligible to participate in convalescent plasma donor programs, yet the optimal window for donating high neutralizing titer convalescent plasma for COVID-19 immunotherapy remains unknown. Here we studied the response trajectories of antibodies directed to the SARS-CoV-2 surface spike glycoprotein and in vitro SARS-CoV-2 live virus neutralizing titers (VN) in 175 convalescent donors longitudinally sampled for up to 142 days post onset of symptoms (DPO). We observed robust IgM, IgG, and viral neutralization responses to SARS-CoV-2 that persist, in the aggregate, for at least 100 DPO. However, there is a notable decline in VN titers ≥160 for convalescent plasma therapy, starting 60 DPO. The results also show that individuals 30 years of age or younger have significantly lower VN, IgG and IgM antibody titers than those in the older age groups; and individuals with greater disease severity also have significantly higher IgM and IgG antibody titers. Taken together, these findings define the optimal window for donating convalescent plasma useful for immunotherapy of COVID-19 patients and reveal important predictors of an ideal plasma donor.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Blood Donors , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Age Factors , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/therapy , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Longitudinal Studies , Male , Middle Aged , Severity of Illness Index , Time Factors , Young Adult
2.
Advanced Materials ; 32(50):2070373, 2020.
Article in English | Wiley | ID: covidwho-976957

ABSTRACT

In article number 2005637, Jonathan F. Lovell and co-workers show that the SARS-CoV-2 RBD surface protein becomes a potent immunogen when presented in nanoparticle format. Using a vaccine adjuvant that spontaneously converts soluble recombinant antigens into stable particles, immunization studies in mice and rabbits shows that the particle-based RBD elicits strong immune responses and potent antibodies capable of neutralizing the virus.

3.
Adv Mater ; 32(50): e2005637, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-893198

ABSTRACT

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a candidate vaccine antigen that binds angiotensin-converting enzyme 2 (ACE2), leading to virus entry. Here, it is shown that rapid conversion of recombinant RBD into particulate form via admixing with liposomes containing cobalt-porphyrin-phospholipid (CoPoP) potently enhances the functional antibody response. Antigen binding via His-tag insertion into the CoPoP bilayer results in a serum-stable and conformationally intact display of the RBD on the liposome surface. Compared to other vaccine formulations, immunization using CoPoP liposomes admixed with recombinant RBD induces multiple orders of magnitude higher levels of antibody titers in mice that neutralize pseudovirus cell entry, block RBD interaction with ACE2, and inhibit live virus replication. Enhanced immunogenicity can be accounted for by greater RBD uptake into antigen-presenting cells in particulate form and improved immune cell infiltration in draining lymph nodes. QS-21 inclusion in the liposomes results in an enhanced antigen-specific polyfunctional T cell response. In mice, high dose immunization results in minimal local reactogenicity, is well-tolerated, and does not elevate serum cobalt levels. Taken together, these results confirm that particulate presentation strategies for the RBD immunogen should be considered for inducing strongly neutralizing antibody responses against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Binding Sites , COVID-19/immunology , Female , HEK293 Cells , Humans , Immunogenicity, Vaccine/immunology , Mice , Pandemics/prevention & control , Rabbits , Vaccination , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL